
KeetaNet:

Scalable Blockchain Banking

Roy Keene, Tanveer Wahid, Ezra Ripps, Ty Schenk

2025-03-12

Abstract

KeetaNet is a Delegated Proof of Stake (dPoS)
blockchain system built from the ground-up to power
blockchain banking on a global scale. It was de-
signed as a cloud-scale and cloud-native solution for
blockchain systems. Fundamentally, blockchain sys-
tems are state machines that high-performance com-
puting and cloud computing have been able to opti-
mize for a long time. KeetaNet has been engineered
to produce a system with unprecedented results, scal-
ing linearly from zero to the hardware limits of any
cloud provider.

1 Introduction

Keeta

Keeta is an engineering company that builds re-
silient and scalable solutions for the financial com-
munity. It was founded to provide a link be-
tween traditional financial institutions and decentral-
ized blockchain-based technologies with distributed
ledgers and blockchain technology.

KeetaNet

KeetaNet is a next-generation blockchain system that
implements a distributed ledger with built-in multi-
token support, an extensible permissions system, and
robust capabilities designed to meet the requirements
of a regulated ledger for handling complex financial
transactions.

KeetaNet builds on the foundation of many other
projects, resulting in a state-of-the-art blockchain
system capable of achieving breakthroughs in the vol-
ume of transaction throughput while preserving the
desirable attributes for blockchain systems. Addi-
tionally, KeetaNet increases the transaction volume
without compromising the transaction latency. This
is accomplished through three primary mechanisms,
which we will explore in this paper.

• Unique hybrid DAG design: The primary data
structure is a directed acyclic graph (DAG)
where each account forms the basis of its own
graph and inter-account interactions are virtual
links between the graphs

• Client directed: Changes to the distributed
ledger are validated through a 2-step process di-
rected by the entity requesting the change and
are presumed not to be conflicting

• Cloud-scale: Built atop common protocols to
take advantage of the enormous scaling capa-
bilities of cloud providers using technologies like
serverless processing

Some existing systems have some of these features,
but KeetaNet is the only system that has all three.

In addition to being a scalable and fast blockchain
system, KeetaNet implements all the features needed
to run a reliable digital economy:

• Compliant: Manages information for“know your
customer” (KYC) and anti-money laundering
(AML) regulations in an efficient way

1

• Extensible: Permits network participants to de-
fine and implement their own policies and regu-
latory requirements

• Native tokens: To allow users to safely create
their own representations of assets on the net-
work

• Atomic swaps: Users can directly settle swaps of
user-created tokens without needing third-party
intermediaries

• Permissions: Asset issuers control interactions
with their tokens to ensure compliance and se-
curity requirements are consistently met

With all of these state-of-the-art features – scalabil-
ity, native token support, atomic swaps, adaptable
permissions, and capacity for on-chain regulatory
compliance – KeetaNet will fundamentally change
the shape of digital currencies.

2 Basic Concepts

2.1 What is a distributed ledger?

A distributed ledger is a specialized form of dis-
tributed system designed to maintain a consistent,
synchronized ledger among multiple nodes, despite
constraints such as network latency, node failures, or
the presence of participants lacking inherent trust in
one another – known as mutually distrusting parties.
A distributed system is a type of system in which

work is spread across multiple interconnected nodes,
each of which communicates with other nodes to
achieve a common goal. Despite being separate en-
tities, these nodes function together as a unified sys-
tem. The nodes in these systems can be governed
by a single centralized authority or by mutually dis-
trusting parties. In a decentralized system, each node
operates with only the information it has–known as
information locality–in order to accomplish its goal.
Distributed Ledger Technology (also known as

DLT) is a distributed system comprised of three main
components: the database (such as a blockchain or
other method of persisting the state of the system),
a network, and a consensus mechanism.

Although the most common data structure seen in
DLT systems is a blockchain, any data structure can
be used as long as it maintains a state.
A network in a DLT system consists of multiple

nodes, each–in the most simple setup–storing a com-
plete copy of the database. These nodes may be op-
erated independently by mutually distrusting parties
from around the world, which communicate with each
other using a standard protocol, such as the Gossip
protocol used by Bitcoin. Using this shared language,
they can convey updates to the state and forward new
transactions that are not yet committed to the state.
The consensus mechanism of a DLT system is the

process by which network participants agree on which
blocks are part of the current state of the system.

2.2 What is a blockchain system?

While a blockchain system can take many forms, the
essential component is a sequential data structure
composed of records, each containing a cryptographic
hash of the previous record. The linkage created by
these hashes forms part of a cryptographic proof that
validates the integrity and immutability of all preced-
ing records, ensuring they have not been altered.
With this minimal definition, some basic tools

utilize a blockchain data structure such as git1 or
fossil2; however, a more common interpretation of
blockchain systems also requires a mechanism to de-
termine which updates to the records in a given chain
are considered “valid” based on application-specific
criteria. This is called the “consensus mechanism.”
Consensus mechanisms can also exist independently
of the blockchain data structure, often implemented
in distributed key value stores (e.g. MongoDB, Dy-
namoDB, etc.).
Blockchain systems often use Merkle hash-trees[1]

to efficiently verify all their content from the most
recent entry. This enables quick auditing of the
blockchain’s history by verifying that the latest
change achieved consensus through the consensus

1Is a git repository a blockchain?

https://medium.com/@shemnon/is-a-git-repository-a-
blockchain-35cb1cd2c491

2Is Fossil a Blockchain? https://fossil-
scm.org/home/doc/trunk/www/blockchain.md

2

mechanism. Each change is linked to the preceding
change via a cryptographic hash, and this recursive
structure ensures that all prior changes are verifiable.

Systems that incorporate both a blockchain data
structure and a consensus mechanism are commonly
referred to as blockchain systems. The most well-
known examples include cryptocurrencies like Bit-
coin, Ethereum, XRP, Nano, and others. This is the
definition of blockchain systems that we will adopt
throughout this paper.

KeetaNet is a blockchain system that implements
a novel consensus mechanism and supports a dis-
tributed ledger, and thus is also a cryptocurrency sys-
tem. A main focus of the KeetaNet system is that it
is currency-agnostic, supporting tokenization of any
asset.

2.3 Why use a blockchain system?

The main advantage of a blockchain system over
a conventional database is its ability to facilitate
updates from multiple, mutually distrusting partic-
ipants without the need for a centralized gatekeeper
that all parties must implicitly trust. Since the con-
sensus mechanism requires these entities to validate
that the constraints of the system are met before any
changes to the state of the system are allowed, users
can rely on the integrity of the state of the system at
any time.

Moreover, because blockchain systems typically in-
volve replication (enabling each participant to vali-
date separate copies of the state and changes), users
benefit from increased availability and resilience.

2.4 Importance of scalability

Scalability is critical when evaluating blockchain sys-
tems because it directly impacts the practical utility
of the system. As the scale of a system grows, so
does its capacity to support a wider variety of appli-
cations and use cases. The more users and applica-
tions a blockchain can effectively support, the greater
its practical utility becomes. If a blockchain cannot

scale effectively, it significantly limits both its useful-
ness and the range of potential applications.

The central obstacle to scaling distributed sys-
tems, including blockchains, is state management—
the data reflecting the current status of the system,
such as account balances, transaction records, and
interdependent information. Stateless systems scale
trivially, but systems maintaining complex state face
significant challenges as transaction volumes increase.
The more complex the state information becomes, the
more coordination and communication are required
among nodes, leading to performance bottlenecks and
limiting overall scalability.

This scaling challenge is deeply tied to the con-
straints described by E. Brewer’s CAP theorem[2],
which states that distributed systems cannot simulta-
neously guarantee consistency, availability, and par-
tition tolerance. Blockchain systems must inherently
maintain partition tolerance to function during net-
work disruptions, forcing them to manage trade-offs
between consistency (ensuring all nodes share a uni-
fied view of state) and availability (maintaining con-
tinuous operation despite node disruptions).

Prioritizing consistency ensures atomic updates
across the network at nearly the same time but re-
quires that all nodes be reachable, meaning that the
system cannot operate during a partition. In con-
trast, prioritizing availability allows the system to re-
main operational even if some nodes are offline, but
this approach may lead to temporary inconsistencies
during a partition. As a result, transactions or op-
erations that participants believed were successfully
completed may be undone or invalidated due to the
lack of global consistency in the partitioned system
state being not globally consistent.

Thus, managing state effectively within the con-
straints of the CAP theorem is fundamental to
achieving scalability. Striking the right balance
between consistency, availability, and transaction
throughput enables blockchain systems to scale ef-
fectively, supporting diverse and demanding applica-
tions in a reliable and performant manner.

3

2.5 KeetaNet improvements upon existing

systems

Although blockchain systems have made significant
strides in creating decentralized and secure systems
for data storage and transfer, most existing solutions
face limitations in multiple areas.

• Extensibility – the capacity to adapt and evolve
over time, incorporating new features and im-
provements without compromising core func-
tionality

• Decentralization – the degree to which control
and governance are distributed across the net-
work, rather than being concentrated in a single
entity or small group of entities

• Scalability – the ability to handle a large volume
of transactions without experiencing a decline in
performance

• Features for Global Finance – the range and util-
ity of features offered, particularly with regard to
interacting with regulated financial institutions
and changing user requirements

2.5.1 Extensibility

Many existing blockchain systems are limited by a
lack of extensibility, often due to hard-coded rules in
the protocol. This rigidity of the design makes updat-
ing some fundamental assumptions a challenging pro-
cess requiring broad community consensus, impeding
long-term adaptability. In contrast, KeetaNet lever-
ages a more dynamic and adaptable framework in
several ways:

• Representative authority – the consensus rules
in KeetaNet are determined by the nodes on the
network providing validation services – called
“representatives”, allowing for a flexible gover-
nance structure that can accommodate changes
and improvements

• Block structure versioning – KeetaNet supports
versions in its block structure, enabling future
enhancements to be smoothly integrated without
disrupting existing operations

• Extensible formats – KeetaNet utilizes extensi-
ble formats throughout its architecture, offering
greater flexibility in how data is processed and
stored:

– Operation types are represented as big in-
tegers, providing ample room for a variety
of transaction types

– The system uses object identifiers (OID)
for specifying cipher formats, enabling easy
adoption of future cryptographic methods

– No Fixed-Length Encoding – by avoiding
fixed-length encoding, KeetaNet provides
the flexibility needed for to adapt to un-
known changes in the future without being
constrained by initial design choices

– Usage of ASN.1 – by using well-established
standards such as ASN.1, KeetaNet allows
for flexible arbitrary data storage which can
be versioned and encoded/decoded in a fa-
miliar way

– Extensible keys – by supporting an ex-
tensible keying format KeetaNet is able
to deal with changes that may arise from
weaknesses discovered, this enables post-
quantum cryptographic support on Kee-
taNet

By incorporating these features, KeetaNet aims to
offer a blockchain system that is not only secure and
efficient, but also equipped for long-term scalability
and adaptability.

2.5.2 Decentralization

A core tenet of blockchain systems is decentralization,
yet many existing platforms compromise on this as-
pect due to various design constraints or governance
models.
KeetaNet ensures a high level of decentralization

by allowing users to distribute decision-making au-
thority among what it calls “representatives”, which
are actors within the system that are given “voting
power” to vote on the permissibility of blocks within
the blockchain system.

4

2.5.3 Scaling

Most existing blockchain systems effectively function
as secure distributed ledgers and, in some cases, as
platforms for running programs (called “smart con-
tracts”[3]) across instances of the distributed ledger.
However, they fail to do so in a way that is scalable.
These systems fail in a few different ways:

• Validation architectures that are not intrinsically
scalable

• Inefficient transaction distribution mechanisms

• Utilization of bespoke protocols that may not be
holistically optimized for scalability

Existing blockchain systems currently face scalabil-
ity issues analogous to those experienced by the early
World Wide Web. Typically, blockchains attempt to
enhance performance by incorporating multithread-
ing techniques within individual validator nodes.
This approach resembles transitioning a monolithic
application to use multithreading but remains con-
strained by the resources and capacity of a single
node. A more effective solution would be analogous
to migrating from a multithreaded monolithic ap-
plication to a cloud-based distributed architecture.
This approach distributes the workload of a single
logical validator across multiple cooperating nodes,
significantly enhancing scalability beyond traditional
single-node solutions.
In contrast, KeetaNet goes beyond simple multi-

threading by supporting operation across large num-
bers of computers, allowing it to scale with traffic.
This approach mirrors how the Web has evolved to
solve scalability challenges using distributed systems
using cloud computing and serverless architectures.
Bitcoin network is inherently difficult to scale in

its base layer, largely by design. The expectation is
that scaling will occur through secondary layers, such
as the Lightning network[4]. For example, Bitcoin
blocks were originally capped at 1 megabyte in size,
and changing this limit has proven challenging, as
demonstrated by the “Blocksize War”[5].
In 2017, a soft-fork update to the Bitcoin protocol

known as Segregated Witness (SegWit)[6] was intro-
duced to address transaction malleability. SegWit

moved digital signatures out of the transaction data
and into a segregated witness area, which also allowed
more efficient use of block space. Additionally, Seg-
Wit introduced the concept of block weight rather
than block size. Under this new system, the block
weight was set to 4 million units, which corresponds
to a maximum block size of 4 megabytes after the
SegWit implementation.
Despite the improvements made by SegWit, Bit-

coin underwent a hard fork in August 2017 at block
height 478559, splitting into Bitcoin and Bitcoin
Cash. Although Bitcoin’s consensus mechanism en-
sures that protocol updates are agreed upon by a
large majority (usually around 95%) for the long-
term benefit of all network participants, this same
process makes updates, scaling, and agreement on the
best path forward particularly difficult, often leading
to conflict.
Moreover, Bitcoin faces other challenges, particu-

larly in connection with its mempool. The mempool
acts as a queue for transactions that have been broad-
cast to the network but have not yet been included
in a block by the miners.
Due to limited blockspace, network congestion can

occur during sudden spikes in transaction volume or
when there is a sharp drop in hash rate, as seen
on March 9th, 2023 when nearly 81,000 transactions
piled up in Bitcoin’s mempool[7]. This congestion
led to higher than average transaction fees and longer
processing times. As adoption and network usage on
the network increases, blockspace will become more
scarce and expensive, resulting in increased demand
for layer 2 solutions like the Lightning network to
handle everyday transactions.
Ethereum faces similar challenges when it comes to

scaling. Several proposals such as sharding, rollups,
state channels, side chains, and the use of layer 2
protocols have been made to address these short-
comings[8]. Sharding allows for partitioning of the
database and allowing subsets of validators to be re-
sponsible for individual shards at the expense of more
complex consensus logic. However, it was shelved in
favor of rollups such as optimistic rollups and zero-
knowledge rollups. Rollups allow transactions to be
handled off-chain on a different layer and then posted
back on the base layer (L1). State channels are

5

multi-signature smart contracts that allow for trans-
acting off-chain and settling back on-chain similarly
to rollups. Side-chains, like Polygon, are separate
blockchains running the Ethereum Virtual Machine
(EVM) which connect to the Ethereum mainnet us-
ing two-way bridges; however, they do not post state
changes back to the Ethereum mainnet. While there
are several approaches, each comes with their own
drawbacks and many often require processing either
off-chain or on different blockchains.
Additionally, its mempool is even more challeng-

ing due to the network’s support of smart con-
tracts. Sometimes referred to as the “Dark For-
est,”[9] Ethereum’s mempool is a highly adversar-
ial environment where automated bots are continu-
ously attempting to achieve miner extractable value
(MEV also known as maximal extractable value post-
Merge). Users can be subjected to attacks such
as “front-running” resulting in higher than expected
costs and delayed transaction settlements [10]. There
have been solutions to prevent this, such as Flash-
Bots, which submits transactions directly to valida-
tors without exposing them in the public mempool,
however, this is a separate project[11]. Even after
“The merge” where Ethereum migrated to a Proof-
of-Stake (PoS) consensus mechanism, newly formed
block builders are still incentivized to construct the
most lucrative blocks.

2.5.4 Features for Global Finance

When it comes to the features needed for global fi-
nance, many existing blockchain systems fall short,
especially in terms of support for regulatory com-
pliance. Traditional blockchain systems often lack
the infrastructure to handle compliance requirements
such as Know Your Customer (KYC) and Anti-
Money Laundering (AML) regulations, as well as to
deal with the needs of banking systems to be able to
administratively control currencies.
KeetaNet addresses these limitations by providing

a framework that can be adapted to meet various
regulatory needs without sacrificing its core features
or decentralization. This makes KeetaNet not only
technologically superior but also practically viable for
real-world financial applications.

3 Prior Art

Before diving into the specifics of various existing sys-
tems, it is crucial to understand the varied landscape
in which these systems operate and differ from Kee-
taNet. Each blockchain protocol is a unique concoc-
tion of decisions made to balance trade-offs inher-
ent to distributed systems. These challenges include,
but are not limited to, Byzantine Fault Tolerance
(BFT), Consistency, Availability, and Partition Tol-
erance. By unpacking these systems, we aim to shed
light on the limitations they exhibit when faced with
these complex, interrelated challenges and how Kee-
taNet seeks to address them more comprehensively.

3.1 Core challenges

The Byzantine Generals problem is a classic fea-
ture in distributed systems that strive to achieve
broad consensus among distinct but connected par-
ticipants, some of whom may be unreliable or out-
right malicious. Another classic distributed system
problem involves trying to maximize three competing
goals. Consistency, Availability, and Partition Toler-
ance in a distributed system. Academic papers dat-
ing back to the 1970s and 1980s, well before modern
blockchain technologies, researched these concepts re-
lated to distributed systems. This research resulted
in several seminal papers such as ones on the CAP
theorem[2] (also called Brewer’s theorem after its au-
thor), the Byzantine Generals problem[12], and the
FLP Impossibility theorem[13].
The importance and usefulness of the Byzantine

Generals problem as an allegory for consensus has
led to a general design goal referred to as Byzan-
tine Fault Tolerance (BFT). The more general CAP
theorem states that three key features of distributed
systems cannot all be optimized simultaneously. Con-
sistency refers to the fact that each node in a network
has the same view of the state of the system. This
feature is key to the network’s security. Availabil-
ity simply refers to the fact that the nodes are online
and responsive at all times in a distributed network of
computers. This feature deals with node operations
failures and communications links of various kinds.
Partition Tolerance refers to proper operation and

6

recovery of the network in the face of communication
failures causing one or a subset of operating nodes to
become partially isolated from the rest of the network
for some period of time.
Thus, design and implementation of consensus

seeking distributed network protocols have to make
trade-offs across these three functional areas depend-
ing on the project goals and priorities’. For exam-
ple, Consistency among distributed data stores (e.g.,
ledgers) generally means eventual data consistency
in light of network latency, faults, etc. Availability of
100% of nodes being fully operational for all time can
never be guaranteed. And partitions will inevitably
occur in the presence of node faults, crashes, and con-
nectivity issues.
Finally, the FLP Impossibility theorem asserts that

perfect consensus cannot be guaranteed across an in-
herently asynchronous network in the presence of just
a single fault.
Modern blockchains closely resemble distributed

databases regardless of how they implement state
persistence. Since all the classic challenges and trade-
offs of legacy distributed systems remain a core chal-
lenge for blockchain systems, every blockchain design
must address how to reach and maintain consensus
across the network in the face of faults and poten-
tially malicious and colluding participants.

3.2 Existing blockchain systems

Bitcoin The pioneering blockchain platform, Bit-
coin, was created by an anonymous person or group
of people under the name Satoshi Nakamoto, who
first introduced it in a white paper in 2008[14] and
launched the Bitcoin network in 2009. It uses a con-
sensus mechanism known as Proof of Work (PoW)
to validate transactions and create new blocks. Bit-
coin’s PoW relies heavily on computational power.
The base transaction layer in Bitcoin does not sup-

port complex smart contracts, as seen in Ethereum
or Sui. Instead, it primarily focuses on the trans-
fer of Bitcoin, the native digital currency, between
“addresses.” The simplicity of Bitcoin’s scripting lan-
guage ensures a high level of security, but limits the
scope of transactions to sending funds or basic condi-
tions such as time-locked or escrow transactions and

multi-signature wallets.

Blocks in the Bitcoin blockchain are created ap-
proximately every 10 minutes. Each block includes a
collection of transactions, and once a block is added
to the blockchain, the transactions within it are con-
sidered confirmed. Users of the Bitcoin network gen-
erally consider a transaction to be sufficiently “final”
after six confirmations, or roughly one hour.

As for scalability, Bitcoin has a theoretical
throughput limit of around 7 transactions per second
with its base layer, which is much lower than that
of newer blockchain systems. To address this, “layer
2” solutions such as the Lightning Network[4] have
been developed to handle smaller and more frequent
off-chain transactions, thus freeing up the main Bit-
coin blockchain for larger and more important trans-
actions.

Unlike Sui and Keeta, Bitcoin’s consensus mech-
anism does not rely on authorities or validators for
transaction ordering and confirmation. Instead, it
relies on decentralized miners who participate vol-
untarily and are incentivized by block rewards and
transaction fees.

Moreover, Bitcoin’s architecture is intentionally
designed to be minimalistic and focused, which con-
tributes to its robust security, but also limits its flex-
ibility and scalability. Over the years, various forks
and updates have attempted to address these lim-
itations, but the core protocol remains largely un-
changed.

Ethereum Originally proposed by Vitalik Buterin
in late 2013, Ethereum was formally launched on
30 July 2015 and has evolved significantly over the
years. Originally built on a Proof of Work (PoW)
consensus mechanism similar to Bitcoin, Ethereum
transitioned to a Proof of Stake (PoS) model on 15
September, 2022, an upgrade commonly known as
“The Merge”[15].

Unlike Bitcoin’s transaction-focused architecture,
Ethereum includes a more versatile scripting lan-
guage that allows for the development of decentral-
ized applications (dApps) and smart contracts. Al-
though this makes the platform more flexible, it
also introduces complexities such as varying gas fees

7

Consensus Mechanism Throughput Finality3

KeetaNet dPoS 10M TPS Sub-second
Sui dPoS 300K TPS Sub-second

Aptos PoS 160K TPS Sub-second
Tendermint PoS 10K TPS 2 seconds

Ethereum (L2) - 5K TPS minutes to weeks
Ethereum (L1) PoS 15 TPS 6.4 minutes

Nano dPoS 160 TPS Sub-second
Bitcoin PoW 7 TPS 60 minutes

Table 1: Comparison of Features Between Blockchain Systems

and slower transaction speeds. Additionally, Turing-
complete smart contracts written in languages such
as Solidity may lead to security vulnerabilities, as ev-
idenced by the numerous exploits over the years[16].
The transition to PoS marked a major shift in

Ethereum’s consensus algorithm, yet it did not sig-
nificantly alter transaction speeds or gas fees for end
users. In this new PoS system, Ethereum organizes
its blocks into epochs, each lasting about 6.4 minutes.
This is roughly similar to the finality time under the
former PoWmechanism, which stood at about 7 min-
utes for 35 confirmations by convention. However,
the PoS model introduces an additional layer of se-
curity, enhancing the network’s overall robustness.
In terms of scalability, Ethereum currently sup-

ports a throughput of about 15 transactions per
second (TPS) at its base layer. However, layer
2 solutions are designed to enhance the scalabil-
ity of Ethereum-based applications, offering higher-
throughput and increasing the network’s overall
transaction capacity.
Much like Bitcoin, Ethereum has inspired a multi-

tude of forks and updates aiming to enhance its func-
tionality and performance, although its core features
and purpose–enabling smart contracts and dApps–
have largely remained unchanged.

Aptos Aptos is the successor to the Diem blockchain
project (formerly known as Libra), which Meta dis-
continued in early 2022. Aptos uses a Proof-of-
Stake (PoS) consensus mechanism, DiemBFTv4[17],
for global consensus. In this regard, Aptos is most
similar to Tendermint and can be thought of as an

evolution of leader-based PBFT protocols. However,
Aptos distinguishes itself by enabling parallel execu-
tion through its Block-STM[18].

In Aptos, validators group transactions into
batches. When a client submits a transaction, it
is broadcast to all validators, each of which inde-
pendently processes the transaction and adds it to
their batch. These compiled and signed block batches
are then sent to all other validators, who store them
persistently. This “continuous transaction dissemina-
tion”, as the name suggests, happens continuously be-
tween all network validators. These persistent block
stores, or “mempools”, serve as batch storage. Trans-
actions are validated locally when the majority of
stake-weighted signatures (one-half plus one) from
other validators are received.

A leader is temporarily selected from the active val-
idator set via the DiemBFTv4 protocol. The leader’s
role is to order their block batches and propose a
new block, a process known as “block metadata or-
dering,” which closely mirrors Tendermint’s voting
mechanism. Batch metadata ordering undergoes two
rounds of voting, where two-thirds plus one of the
validators must agree. Once the block metadata are
agreed upon, each validator can independently exe-
cute the block batches on their ledger. Periodically,
the validators share their ledger status with other val-
idators, ensuring that a globally authenticated ledger
propagates throughout the network.

Unlike Sui or Keeta, which prioritize horizontal
scalability through alternative means, Aptos aims to
achieve scalability primarily through network shard-
ing. This approach, similar to those used by Ten-

8

dermint derivatives, divides the network into multi-
ple states to improve throughput. However, sharding
introduces additional complexity and can negatively
impact the network’s liveness–the property that en-
sures that the network can continue functioning over
time.

Sui Sui uses a hybrid consensus model, the base
transaction layer of which has been adapted from
the original FastPay system developed in 2017[19].
This base layer utilizes a dPoS consensus mechanism
similar to Keeta, called Byzantine Consistent Broad-
cast. However, for shared objects (like smart con-
tracts) which require a defined global order, a differ-
ent consensus mechanism called Narwhal and Tusk
may be used, which is currently under development
by the Sui team. Narwhal is designed to handle
the high throughput of transaction processing, while
Tusk provides an asynchronous Byzantine Fault Tol-
erant (BFT) consensus mechanism for achieving pre-
cise ordering of these shared objects, a process known
as Byzantine Agreement[20].

In Sui, transactions are initially signed by the user,
and the client sends the transaction to all authorities
(analogous to validators or representatives). Upon re-
ceiving the transaction, each authority validates the
authenticity of the transaction and returns a signa-
ture to the client, called a partial certificate. Once the
client has collected enough partial certificates, equal
to the quorum of that epoch (two-thirds plus one of
the authorities), it forms a full transaction certificate.

What happens next depends on the type of transac-
tion. If the transaction involves shared objects (such
as smart contract objects), the full transaction cer-
tificate is sent to the authorities and a higher-level
Byzantine Agreement Protocol, which is responsible
for the global ordering of the shared objects. This
separate consensus mechanism, which is detailed in
the Narwhal and Tusk white paper[20], uses an asyn-
chronous consensus mechanism based on a DAG-
based mempool. Authorities then wait for the Byzan-
tine Agreement Protocol to finalize the transaction,
ensuring the correct ordering of shared objects before
the process proceeds.

If the transaction does not involve shared objects,

or if it does involve shared objects that have been
ordered by the Byzantine Agreement Protocol, each
authority validates the authenticity of the full trans-
action certificate sent by the client and summarizes
the result into a signed effects response. Clients are
responsible for collecting each signed effects response
from the authorities until a quorum of the signed ef-
fects has been collected, equal to two-thirds plus one
of the authorities. Clients bundle these signed effects
responses into an effects certificate, which provides
proof to any entity that the transaction may proceed.

Finally, either the client or the recipient (if the
client sent the effects certificate directly) publishes
the effects certificate to the authorities, who then in-
dependently update their internal ledgers. At this
point, the transferred assets are available for use by
the recipient.

Unlike Sui, Keeta does not utilize a separate con-
sensus mechanism for the global ordering of shared
objects. This greatly reduces the complexity and la-
tency of the system, but at the cost of liveness for
the shared objects. For more information on the engi-
neering trade-offs of using two consensus mechanisms,
see the reference provided by the Sui team[21].

Like Sui, Keeta is expected to scale linearly with
the number of workers, analogous to persistent “ma-
chines” in other systems. Unlike persistent machines,
however, workers are spawned as needed for each in-
coming request and terminate when the request is
handled. This allows Keeta to scale completely lin-
early, bound only by available hardware, by increas-
ing the workers available to each representative as
network throughput increases.

Unlike KeetaNet, Sui is limited by the number
of cores per machine, preventing true linear scaling.
Keeta is only dependent on the number of workers it
can spawn assuming that no bottlenecks, like internal
network bandwidth, impede it. In practice, however,
the serverless workers in KeetaNet are provided by
either Google Cloud Run or AWS Lambdas and are
almost unbounded.

Tendermint Tendermint is the consensus protocol
behind several well-known projects, including Cos-
mos, Terra, Injective, Binance Smart Chain, and

9

Provenance (the blockchain system powering the
USDF Consortium4). Tendermint is a leader-based
proof of stake (PoS) consensus mechanism. In some
cases, such as for Provenance5, the Tendermint pro-
tocol has been modified to support dPoS, but is still
leader-based.

Like other PoS systems, the validators in Tender-
mint are selected based on the bonding of the native
governance token (for example, Atom in the Cosmos
network) to a validator’s account. The more tokens
bonded to the account, the greater voting power that
validator has on the network. Validators are incen-
tivized to vote honestly by two methods: through fees
collected from validated blocks and through a slash-
ing mechanism, where some of the validator’s stake is
forfeited if other validators detect malicious behavior
during the voting process.

To initiate a transaction using the Tendermint pro-
tocol, a client first broadcasts their transaction to
the network mempool cache with an associated fee.
Typically, each validator maintains their own mem-
pool cache. A leader is selected in a round-robin style
based on each validator’s total network stake, and the
leader begins to build a block from the transactions
existing in the mempool starting with the highest fee
transactions (of which the leader will reap the fees).
Since blocks have a maximum size, it is possible that
not all transactions in the mempool will be included
in the block to be voted on. In this case, those user
transactions will be included in subsequent blocks, or
in the case of high network congestion, may not be
included at all.

Once the leader has assembled the block, it broad-
casts the proposed block to the other validators. Val-
idators then perform a two-step voting process: first,
they sign a prevote if they deem the block valid and
broadcast these prevotes to other validators. Once a
validator receives a two-thirds majority of prevotes
(i.e., more than 66% of the validators have voted for
the block), it signs a pre-commit message and broad-
casts this message to the other validators. Finally,
once a validator receives a two-thirds majority of pre-
commit messages, it commits the block, adding it to

4https://usdfconsortium.com/
5https://provenance.io/

the global blockchain and increasing the block height
by one.

At this point, all transactions included in the block
are considered final and can be spent by the recipi-
ent. The process then starts again with a new leader
selected for the next round of voting, and the cycle
repeats.

One important note about Tendermint is that it
enforces absolute global ordering for transactions,
meaning that transactions cannot be processed in
parallel. Every transaction must wait to be in-
cluded in a sequential block (the “monolithic block”
model[22].). This design choice ensures strong con-
sistency but limits scalability, as it prevents parallel
processing of transactions. Global ordering is abso-
lute and transactions cannot be processed in parallel.
Transactions must wait to be included in each mono-
lithic block.

Like Nano (discussed below), each vote in Tender-
mint is broadcast to all other nodes asynchronously.
This results in very high network traffic, limiting
maximum network throughput. In KeetaNet, non-
deterministic network traffic is unicast to the client
only, significantly reducing network traffic and allow-
ing for higher network throughput.

Nano Nano sets itself apart in the blockchain
ecosystem by prioritizing fee-less and instant trans-
actions. It uses a unique block-lattice architec-
ture, where each account has its own independent
blockchain. This structure facilitates high transac-
tion throughput, minimizes conflicts, and ensures
that transactions are processed quickly and effi-
ciently. Unlike many other blockchains, Nano focuses
exclusively on peer-to-peer transactions, deliberately
avoiding complex smart contracts and decentralized
applications. By narrowing its focus, Nano optimizes
for speed and simplicity, with transactions generally
finalizing within seconds and without any associated
fees.

Nano’s consensus mechanism operates on an Open
Representative Voting (ORV) system, a specific form
of Delegated Proof of Stake (dPoS). Unlike typical
dPoS systems, Nano’s ORV doesn’t economically in-
centivize delegates, making it fundamentally different

10

in governance. In this network, users delegate their
balances to representatives, often run by third-party
wallets or exchange services, who are responsible for
transaction verification.
Most clients in Nano’s network rely on these third-

party services because operating a full node is nec-
essary for keeping track of the network’s state. The
transaction process in Nano involves multiple rounds
of voting among these representatives. Each rep-
resentative initially sends a non-final vote for the
transaction block, and once the block receives enough
votes to cross a weight threshold—typically 50% of
the online voting weight—a final vote is cast. This
block is then cemented into the ledger.
The accounting process in Nano is particularly rig-

orous when it comes to fund transfers. After a “send”
operation, the recipient must issue a“receive”block to
spend the transferred funds. This dual-action mech-
anism serves as a form of digital double-entry book-
keeping. Specifically, the “send” block acts as a debit
entry and the “receive” block acts as a credit entry.

One notable aspect of Nano’s protocol is that votes
are not permanently recorded on the ledger. If a
network node requires bootstrapping, it must obtain
each missing block individually from other nodes and
go through a new round of voting by representatives
against the “frontier blocks.”
Another unique feature of Nano’s network is that

each transaction must include a small Proof of Work
(PoW) nonce before being broadcast. This PoW acts
as a deterrent against spam transactions, effectively
serving as a “fee” paid for computing power.
Similarly, KeetaNet introduces its own flexible fee

mechanism, which allows representatives, who di-
rectly handle transaction requests from users, to en-
force network constraints at their discretion. This
could include refusing service under certain condi-
tions, providing a more customizable approach to
transaction validation and fee management.

4 System Architecture

KeetaNet’s architecture draws parallels to both con-
temporary database systems and modern web back-
end design. At its core, like any blockchain system,

KeetaNet functions as a distributed database. How-
ever, much like web backends serve as interfaces to
databases, KeetaNet models itself as an interface to
its underlying ledger.

This dual resemblance is not accidental, it reflects a
deliberate design choice to harness the decades of re-
search and development in database technologies and
web backend scalability. By combining the strengths
of both fields, KeetaNet achieves remarkable scalabil-
ity, benefiting from the best practices and time-tested
methodologies developed in these mature domains.

The KeetaNet reference implementation is written
in TypeScript to underscore the fact that KeetaNet’s
scalability and performance are not the result of ex-
cessive hyper-optimization, but rather the product of
a thoughtful, and inherently scalable design. It also
ensures that the reference implementation is accessi-
ble and readable to a broad range of developers.

4.1 Components and their interconnec-

tions

The KeetaNet system comprises multiple intercon-
nected components, each contributing to the overall
functionality and efficiency of the platform. See Fig-
ure 1 on the following page for a graphical represen-
tation of these components and their relationships.

4.1.1 Node

A node is a piece of software that participates in the
KeetaNet network. Nodes can be either representa-
tives, which actively vote on network decisions, or
participants, which only observe the network’s op-
erations. Nodes that serve as representatives refer
to their own copies of the ledger to ensure that new
operations are valid. These nodes are essential for
maintaining the security, integrity, and overall func-
tionality of the network.

4.1.2 Ledger

The ledger records everything on the network, includ-
ing user identities, account balances, operation his-
tory, and votes. This is different from the blockchains

11

Figure 1: Components and their relationships

12

that record operations for a specific account. All op-
erations are added to the ledger once they are con-
firmed by a quorum of representatives through the
consensus mechanism and added to the account’s
blockchain. The ledger tracks the effects of every op-
eration since the inception of the network, providing
a reliable reference for nodes to maintain an accurate
historical record.
The KeetaNet ledger maintains the state of the sys-

tem and contains an up-to-date state for the following
kinds of data:

Voting Power When an account balance is dele-
gated to a representative through the “Set Repre-
sentative” operation, the representative gains voting
power. This voting power is currently determined by
the total balance of the base token across all accounts
that have delegated their funds to that representa-
tive.

Balances Within the ledger, balances are main-
tained on a per-token basis on each account and are
maintained as an arbitrary large big integer.

Tokens Tokens may be created with the “Create
Identifier” operation and are stored within the Kee-
taNet ledger. Each token has the supply (total num-
ber of minted tokens) and outstanding balance of that
token (tokens which have been issued to accounts)
maintained as state within the ledger.

Certificates Certificates are a specific type of meta-
data within the KeetaNet ledger which can be used
to identify the user associated with an account. The
certificate for an account is validated by the network
validators to share the same public key as the ac-
count.
It is possible for permissions to reference a certifi-

cate authority as a way of permitting actors, such as
regulated entities, to make decision based on the fact
that a trusted party has verified certain properties of
the associated user.

Metadata As a result of the “Set Info” operation,
some basic user information may be set on an address

for informational purposes.

Permissions KeetaNet has an extensive permission
system, allowing for fine-grained control over ac-
counts, tokens, and the network.

Blocks In order to maintain ordering, the blocks are
recorded in the ledger. The blocks contain all the
updates made to the ledger, as well as which accounts
are being updated.

Votes Issued by ledgers as a side-effect of the ledger
contents, votes are endorsements by a particular rep-
resentative to insert a given block or set of blocks
into their ledger. Votes come in two kinds: perma-
nent and temporary. Only permanent votes can end
up on the “main” ledger, but a representative must
maintain all votes it issues, and so unpublished votes
(whether permanent or temporary) will be stored in
the “side ledger.”

A compliant node will never issue two contradic-
tory votes–that is, two votes that endorse separate
sets of blocks to succeed other blocks on a chain that
have overlapping lifetimes.

Votes are also uniquely identified by the tuple of
their issuer and the vote serial number, ensuring that
each vote can be traced and is distinguishable.

Side ledger The side ledger is a secondary area
where unpublished votes and blocks are stored. All
temporary votes will be unpublished, but the repre-
sentative that issued them must keep track of them
throughout the lifetime of the vote to avoid violat-
ing one of the core principles of the protocol – that
representatives never issue competing valid votes.

A vote transitions from the “side ledger” to the
“main ledger”when it is received over the peer-to-peer
network and has enough permanent votes within its
vote staple to reach consensus. Votes, and blocks
which are referenced by those votes, on the side
ledger are consulting the ledger to check for conflict-
ing blocks, but only the main ledger is checked when
validating that a block has a valid predecessor.

13

4.1.3 Communications

Voting Methodology Modeled after common oppor-
tunistic concurrency control (OCC13[23]) systems,
KeetaNet’s voting is “directed” by the client (as
shown in Figure 2 on the next page). To publish
a block or set of blocks, a client first requests tempo-
rary votes from a quorum of representatives, weighted
by voting power; once these temporary votes are re-
ceived, the client then requests a permanent vote
from the subset of representatives who provided the
temporary votes.

As noted in section 2.5.2, the voting power required
for a quorum is adaptive. If a single representative
holds a disproportionate amount of voting power, the
quorum threshold increases, ensuring that more than
one representative is needed to reach consensus.

This communication is achieved by connecting di-
rectly to each representative’s API endpoints over
HTTP for generating votes.

Distribution Once a set of blocks has been voted
on and received permanent votes from a quorum
of representatives, the resulting staple can be pub-
lished to the entire network. To reduce spam, only
staples may be published to the peer-to-peer net-
work which distributes new information to all con-
nected nodes. This communication happens over a
WebSocket-based protocol.

A compliant node will only forward messages if it
can incorporate them into its ledger (in the case of
a representative) or if the message contains a staple
with votes that meet the required voting power.

5 Core Algorithms and Protocols

5.1 Consensus algorithm

The KeetaNet system utilizes an enhanced delegated
proof of stake (dPoS) consensus to ensure a balanced
and healthy democratic voting system. Each account,
including representatives, is associated with an X.509
certificate that verifies their identity, supports net-
work security, and, when necessary, ensures compli-
ance with KYC regulations. Importantly, no person-

ally identifiable information (PII) is included in the
certificate.
Account holders have the option to delegate their

entire balance of the network’s base token to a vot-
ing representative of their choice. The sum of all the
delegated balances a representative has at a given
time is referred to as their “weight.” Representatives
with more weight have more “voting power.” The
balance delegated to a representative remains in the
delegator’s account and can be moved freely. How-
ever, moving tokens may change the representative’s
weight.

5.2 Transaction validation

In KeetaNet, transaction validation is in the hands of
its representatives. Acting as gatekeepers of what is
permitted in the ledger, representatives ensure that
all transactions comply with the defined rules and
constraints of the ledger. Their role is not only pas-
sive validation, but active enforcement of the rules of
the ledger as well as the overall health of the network.

Within KeetaNet, representatives collectively de-
fine the rules by which all participants can update
the ledger.

Two-Phase Voting A unique feature of KeetaNet’s
transaction validation process is its two-phase voting
mechanism. This process ensures a robust vetting
mechanism, adding depth and rigor to the validation
process. Not only does it filter out invalid trans-
actions, but also it offers a buffer against malicious
or contentious activities, ensuring that the KeetaNet
blockchain system remains reliable and trustworthy.
The two steps of the process, represented in Figure 2
on the following page, are as follows:

Temporary Votes When a transaction is initi-
ated, it is not broadcast outright. Instead, the de-
tails of the transaction are conveyed to representa-
tives over secure HTTPS unidirectional channels. In
response, representatives issue temporary votes for
the provided blocks based on their validity at the time
they were received. This phase is crucial because it
establishes a primary consensus on the transaction’s

14

Figure 2: KeetaNet Voting Process

15

legitimacy. The main goal of this phase is to deter-
mine and establish the quorum.

Permanent Votes Upon obtaining a quorum of
temporary votes, representatives that provided those
initial endorsements can issue permanent votes for
the transaction. The differentiation between tempo-
rary and permanent votes lies primarily in their dura-
tion. The key here is to ensure that a permanent vote
is only cast after the quorum is determined through
the temporary votes. This protects against prema-
ture and potentially erroneous approval of transac-
tions. In particular, a compliant node will strictly
avoid issuing conflicting votes (of any lifetime) for
competing chain successors.

Publishing Once validated, the votes and blocks are
broadcast to the peer-to-peer network as a consoli-
dated package, called a vote staple. This gives the en-
tire network a synchronized and transparent record.
Nodes will only forward staples over the peer-to-peer
network that have a quorum of permanent votes at-
tached and that can be inserted into their own ledgers
if appropriate.

5.2.1 Voting power

The weight assigned to a representative translates
into their “voting power” within the network. This
voting power is critical during consensus formation.
The more voting power a representative has, the more
influence they wield in network decisions, including
transaction validation and system rule changes.

5.3 Data storage and retrieval

KeetaNet employs a sophisticated data storage model
designed for high-performance read and write opera-
tions. This section provides details on how the system
maintains data integrity while supporting concurrent
operations.

5.3.1 Concurrency control

Concurrency control is the process of coordinating si-
multaneous access to the same data, and in the con-

text of distributed systems or blockchain computing,
it presents a multifaceted challenge. In these sys-
tems, where data is distributed across multiple nodes
or servers, ensuring data consistency and preventing
conflicts between simultaneous operations is critical.

Optimistic concurrency control Concurrency con-
trol in KeetaNet is managed through an Optimistic
Concurrency Control (OCC) mechanism. Using this
approach, transactions are initially assumed to be
non-conflicting, permitting them to proceed without
locks. Conflicts are detected and addressed after the
fact, which reduces latency and increases throughput
for the common case where no conflicts occurs.

Clients are responsible for managing conflicts and
resubmitting transactions if necessary.

5.3.2 Consistency

Having consistent data when required is one of the
most important aspects of any distributed system.
Without this, it is impossible to prove integrity and
trustworthiness. KeetaNet is able to provide different
levels of consistency for different aspects of the net-
work, ensuring maximum performance and integrity.

Fully Consistent Writes Writes in KeetaNet are
fully consistent, achieved by obtaining a quorum of
representatives based on voting power. This ensures
that data is consistently replicated across the net-
work.

Eventually Consistent Reads KeetaNet allows for
eventually consistent reads by permitting reads from
any representative. This optimizes for latency and is
useful for non-critical data reads.

Fully Consistent Reads For critical operations, Kee-
taNet offers fully consistent reads by obtaining con-
firmation from a quorum of representatives based on
their voting power. This ensures data integrity and
consistency.

16

5.3.3 Ordering

KeetaNet implements partial ordering of transac-
tions, meaning transactions are ordered only in rela-
tion to those required by the constraints of the ledger.
This contrasts with most blockchain systems, which
enforce total global ordering, where each operation is
assigned a linear position relative to all others.

Partial ordering enables many transactions to be
processed in parallel without conflicts, improving ef-
ficiency.

5.4 Data formats

5.4.1 Accounts

Accounts in KeetaNet refer to either the public key of
a key-pair or a deterministically generated account.
Every account is given an address, which is a repre-
sentation of their public key or some other uniquely
identifiable information. Each account has a separate
ordered blockchain within the DAG to store that ac-
count’s blocks.

Keyed accounts Keyed accounts are comprised of a
private and public key-pair. They can digitally sign
a block and are generally the only kind of account on
other blockchains. On KeetaNet, these are the only
accounts that can sign votes or blocks.

Generated accounts Generated accounts are
special-purpose addresses generated deterministi-
cally from publicly available data. Unlike keyed
accounts, they do not have the ability to sign
transactions but serve other specific roles within
the network. Generated accounts have an address
which is deterministically derived from some fixed
input, either from an operation within a block or
from well-known information such as the network
ID. Ownership permissions will automatically be
granted to the creator over the generated account.
To publish a block to the chain of a generated
account, a keyed account with proper permissions
must sign a block for the generated account. There
are three types of generated accounts:

Network accounts Each network has exactly one
Network Account. This account is generated from
the unique numeric representation of that network.
Network accounts are used to assign network-wide
permissions. For example, to create a new token on
the network, the creator must have that permission
assigned to them on the network account. The base
token for the network is also generated from this ad-
dress.

Storage accounts Storage accounts are a versatile
account type that can hold balances and are gener-
ally meant to be used as holding accounts for funds.
They may be jointly owned or controlled by multiple
accounts by setting the appropriate access control list
(ACL) entries.

Token accounts Tokens act as identifiers for dif-
ferent transferrable currencies on the network. Ad-
ministrators and owners of these accounts have the
ability to modify the total supply, modify an en-
tity’s balance of the token, and grant/revoke a spe-
cific user’s ability to use the token.

5.4.2 Operations

Operations in KeetaNet are high-level instructions to
modify the state of the ledger. Operations are limited
to a predefined set of instructions. For example, a
“Send” operation is used to send a token from one
account to another and a “Set Rep” operation is used
to specify a delegated representative to vote on behalf
of the account. These instructions can be expanded
in the future to support additional instructions for
other use cases.

Effects With any set of instructions, there is a de-
sired result. When a node on the KeetaNet net-
work validates or adds a set of blocks to its ledger,
it first computes the results of the operations con-
tained within those blocks. An effect represents ei-
ther an update to or a requirement from the data in
the ledger. For example, a“Send”operation produces
two effects: it decrements the sender’s balance and
increments the recipient’s balance for a given token.

17

Furthermore, the operation imposes certain require-
ments on the ledger data, such as ensuring that both
parties have permission to use the token and verify-
ing that the sender has sufficient balance to complete
the transaction.

Defined operations KeetaNet has a set of predefined
operations for an address to use. All operations are
self-contained and do not have references to one an-
other within a block.

See table 2 on the next page for a list of operations
and a brief description of the operation as well as
what parameters they accept.

5.4.3 Blocks

Blocks in KeetaNet are the fundamental mechanism
by which the ledger is updated. Each block con-
tains an ordered set of operations performed by a
specific account. A block can include multiple oper-
ations from the same account, and its size may vary
depending on the number of operations it holds.

Structure Blocks are encoded in ASN.1 DER[24]
which is a flexible container as well as versioned –
both of these features enable the block to be exten-
sible in the future since the container format will
support a wide variety of types and can represent
any backwards-incompatible changes with a version
change. The block is dynamic in size, so it can be as
large as the representatives will accept.

See table 3 on page 20 for a breakdown of what is
in a block as well as Listing 1 on page 33 for the full
ASN.1 schema of blocks.

5.4.4 Votes

Votes in KeetaNet are encoded as X.509[25] certifi-
cates. X.509 was chosen because it is a widely-used
and well-known standard (RFC5280) and contains a
flexible data structure using ASN.1. Representatives
use a vote as a means to communicate their intention
to add a set of blocks to their ledger. Depending on
the timeframe for which an issued vote is valid, it is
either considered a temporary or a permanent vote.

Contents Each vote contains the following:

• An issuer - The account that signed the vote

• Serial - An arbitrary integer defined by the issuer
which is suggested to be incrementing, but can
be any unique value. Two separate votes with
the same issuer and serial will not be accepted
by the network

• Blocks - A set of block hashes for which the issuer
vouches the validity

• Starting Time - The timestamp when the vote
was issued

• Ending/Expiry Time - The timestamp of when
the vote expires and should not be considered in
quorum anymore

• Signature - The issuer’s cryptographic signature
on the data, confirming that they were the one
who issued the vote

Validity A vote is considered valid for a represen-
tative in the voting process if it is not expired, the
serial has not been seen before, and the set of blocks
is valid.

5.4.5 Staples

Inspired by OCSP Stapling[26, § 8], Staples–also
known as Vote Staples–create a permanent voting
context by bundling multiple blocks together for si-
multaneous voting and publication to the network.
This process enhances the efficiency of the voting and
validation stages, resulting in higher throughput.
Staples are the fundamental unit of exchange

within KeetaNet, functioning as journaled updates
to the system. If any block within a staple is found
to be invalid, the entire staple is rejected and must
go through the voting process again, excluding the
invalid operation(s).
By grouping blocks and votes together, stapling

increases efficiency and reduces the need for the net-
work to locate multiple pieces of data for the same
operation. A staple is constructed from at least one

18

Figure 3: Native Exchange Visualized

Name Arguments Description

SEND to, amount, token Transfers “amount” of “token” to the recipient
(“to”)

SET REP to This operation takes in a representative address
and delegates the sender’s weight to that

representative.
SET INFO name, description,

metadata,
defaultPermissions

SET INFO updates an address’s name,
description, metadata, and default permissions (if

it is from a generated identifier account).
MODIFY

PERMISSIONS
principal, target,

permissions
Modifies permissions of “principal” with the

entity being the sender
CREATE IDENTIFIER type Creates a new identifier

TOKEN ADMIN
SUPPLY

method, amount Modifies the supply of a token

TOKEN ADMIN
MODIFY BALANCE

token, amount, method Modifies the balance of a user for the specified
token

RECEIVE from, amount, token,
forward

Requires a certain amount received previously
within the Vote Staple to be valid

Table 2: KeetaNet Operations

19

Field JSON Type ASN.1 Tag
Type

Description

version integer INTEGER The block specification version (version 1 described
here)

date string GENERALIZED
TIME

ISO-8601 UTC formatted date for the block

previous 256 bit hex-char
string

OCTET
STRING

Previous block hash for the (account’s) chain

account string OCTET
STRING or

NULL

String representation of the account public key + key
type

signer string OCTET
STRING

String representation of the signer public key + key
type

signature 512 bit hex-char
string

INTEGER ECDSA or Ed25519 512-bit signature

network string INTEGER ID of the network
subnet string INTEGER or

NULL
ID of the subnet

operations array SEQUENCE Array list of operations and their contents

Table 3: KeetaNet Block Structure

block and at least one vote, and all votes within a sin-
gle staple must correspond to the same blocks, in the
same order, as the staple was constructed. Further-
more, a staple cannot mix temporary and permanent
votes.

To maximize efficiency, the network uses com-
pressed staples. The more similar the contents of the
included blocks and votes, the more the staple can be
compressed.

5.5 Auxiliary functions

5.5.1 Bootstrapping

The bootstrapping protocol exists to help a new node
or a node that has potentially fallen behind the rest
of the network bulk-fetch changes to the ledger that
it may have missed (for instance, if it was offline). It
works on the HTTP protocol by talking to represen-
tatives and requesting a set of staples that occurred
after a given timestamp. This timestamp is compared
to the votes within the staple for reference. In addi-
tion, a Bloom filter[27] is used to prevent staples that

have already been sent to the requester from being
included.

5.5.2 Permissions

Two types of permissions are used in KeetaNet: “base
permissions” and “external permissions.” Base per-
missions are represented by a symbolic name that
corresponds to a specific value. External permissions
are not managed by KeetaNet and can hold arbitrary
flags (offsets) managed by an external party.

Encoding Both base and external permissions are
encoded using a bit-field of offsets, enabling fast, com-
pact bitwise operations for combining and checking
permissions. This approach also makes subsequent
modifications highly efficient.

Access Control List On KeetaNet, permissions are
stored and represented alongside the information that
describes their use. An access control list (ACL) en-
try will contain the following fields.

20

• Principal - The address identifying the actor on
the network who is accessing an entity

• Entity - The network address being granted/de-
nied access and the address of the chain where
ACL modifications are applied

• Target - An optional address that further nar-
rows the scope of the permission

• Permissions - The list of base and/or exter-
nal permissions granted, both represented as bit
fields

Permission Hierarchy Permissions on KeetaNet are
always read from most to least specific, with the de-
fault if none are set being empty. Permissions do not
inherit from level to level. If one is defined, it will
override the less specific entry.

1. ACL entry that matches the principal + entity
+ target exactly

2. ACL entry that matches the principal + entity
exactly, but does not include a specific target

3. (If the entity is able to) The default permission
set by the entity

4. If none of the above are found, the permissions
are assumed to be empty.

For example, if a storage address grants the ability for
one user “SEND ON BEHALF”with no target, that
user will be able to send any token from the storage
account. If the storage account then creates an ACL
entry for the same user with a specific token as a
target not including“SEND ON BEHALF”that user
will still be able to send any token, just excluding the
specific token from which permissions were removed.

Base Permissions The base permissions each have
a symbolic name and use case defined by KeetaNet.
Each symbolic name is tied to a specific offset to be
used in the bit field and a specific use on the net-
work. Each type of base permission is listed in Table
4 on the following page, along with a brief descrip-
tion, what type of addresses they can apply to, and
if they can be used as a default permission.

External Permissions External permissions are not
managed by KeetaNet, but can store arbitrary flags
controlled by an external party. External parties can
set these to arbitrary values using the same bit-field
format as their counterpart. Within the network,
each offset is not associated with a symbolic name
and is always represented as a bit field. If an ex-
ternal party wishes to use symbolic names for these
permissions, a client-side method is available to facil-
itate this representation.

Ownership The “OWNER” base permission repre-
sents the ownership of an address and is only appli-
cable to generated account identifiers. For other ac-
counts, ownership is tied to the holder of the private
key. Upon account creation, the creator is automat-
ically granted the “OWNER” permission. From that
point on, there must always be exactly one address
with the “OWNER” permission. Any modifications
to ownership must occur within the same vote staple
to ensure the count remains equal to one. Here are
some examples of valid and invalid ownership modi-
fications for a storage account:

• Invalid Ownership Modification

– The owner of a storage account signs
a block granting a different address the
OWNER permission, leaving two owners

– The owner of a storage account signs a
block lowering their own permissions to
ADMIN, leaving no owners

– The owner of a storage account performs
both the correct addition and removal, but
performs the action in two vote staples,
making each one invalid alone

• Valid Ownership Modification

– The owner of a storage account signs a
block in which the new owner is granted
the OWNER permission and the previous
owner is re-assigned a bit field not includ-
ing OWNER.

21

B
a
se

F
la
g
N
a
m
e

D
es
cr
ip
ti
o
n

E
n
ti
ty

P
ri
n
ci
p
a
l

T
a
rg
et

T
a
rg
et

D
es
cr
ip
ti
o
n

C
a
n
B
e

D
ef
a
u
lt

A
C
C
E
S
S

A
g
en
er
ic

fl
a
g
,
if
a
n
y
o
th
er

fl
a
g

is
se
t,
th
is
o
n
e
m
u
st

a
ls
o
b
e
tr
u
e

A
n
y

A
n
y

A
n
y

Y
es

O
W

N
E
R

F
u
ll
co
n
tr
o
l
ov
er

a
n
a
cc
o
u
n
t

G
en
er
a
te
d

A
cc
o
u
n
t

K
ey
ed

A
cc
o
u
n
t

N
ev
er

N
o

A
D
M
IN

C
a
n
d
o
ev
er
y
th
in
g
ow

n
er

ca
n
d
o
,

ex
ce
p
t
m
o
d
if
y
th
e
ow

n
er

A
n
y

K
ey
ed

A
cc
o
u
n
t

N
ev
er

N
o

P
E
R
M
IS
S
IO

N
D
E
L
E
G
A
T
E

A
D
D

C
a
n
a
d
d
a
su
b
se
t
o
f
it
s

p
er
m
is
si
o
n
s
to

o
th
er

a
cc
o
u
n
ts

A
n
y

K
ey
ed

A
cc
o
u
n
t

A
n
y

A
d
d
re
ss

it
ca
n

m
o
d
if
y

p
er
m
is
si
o
n
s
fo
r

N
o

P
E
R
M
IS
S
IO

N
D
E
L
E
G
A
T
E

R
E
M
O
V
E

C
a
n
re
m
ov
e
a
su
b
se
t
o
f

p
er
m
is
si
o
n
s
to

o
th
er

a
cc
o
u
n
ts

A
n
y

K
ey
ed

A
cc
o
u
n
t

A
n
y

A
d
d
re
ss

it
ca
n

m
o
d
if
y

p
er
m
is
si
o
n
s
fo
r

N
o

S
E
N
D

O
N

B
E
H
A
L
F

C
a
n
S
E
N
D

o
n
b
eh
a
lf
o
f
en
ti
ty

A
n
y

K
ey
ed

A
cc
o
u
n
t

T
o
k
en

N
o

S
T
O
R
A
G
E

C
A
N

H
O
L
D

S
to
ra
g
e
ca
n
h
o
ld

ta
rg
et
ed

to
k
en

S
to
ra
g
e

T
o
k
en

N
ev
er

Y
es

S
T
O
R
A
G
E

C
R
E
A
T
E

C
a
n
cr
ea
te

st
o
ra
g
e
id
en
ti
fi
er
s

N
et
w
o
rk

K
ey
ed

A
cc
o
u
n
t

N
ev
er

Y
es

S
T
O
R
A
G
E

D
E
P
O
S
IT

C
a
n
d
ep

o
si
t
in
to

st
o
ra
g
e
a
cc
o
u
n
t

S
to
ra
g
e

A
n
y

T
o
k
en

W
h
ic
h
to
k
en

ca
n
b
e

d
ep

o
si
te
d

Y
es

T
O
K
E
N

A
D
M
IN

C
R
E
A
T
E

C
a
n
cr
ea
te

to
k
en

id
en
ti
fi
er
s

N
et
w
o
rk

K
ey
ed

A
cc
o
u
n
t

N
ev
er

Y
es

T
O
K
E
N

A
D
M
IN

M
O
D
IF

Y
B
A
L
A
N
C
E

C
a
n
m
o
d
if
y
th
e
b
a
la
n
ce

o
f
th
e

to
k
en

fo
r
a
n
o
th
er

a
d
d
re
ss

T
o
k
en

K
ey
ed

A
cc
o
u
n
t

A
n
y

A
d
d
re
ss

it
ca
n

m
o
d
if
y
b
a
la
n
ce

fo
r

N
o

T
O
K
E
N

A
D
M
IN

S
U
P
P
L
Y

C
a
n
in
cr
ea
se
/
d
ec
re
a
se

th
e
to
k
en

su
p
p
ly

T
o
k
en

K
ey
ed

A
cc
o
u
n
t

N
ev
er

N
o

U
P
D
A
T
E

IN
F
O

A
b
il
it
y
to

u
se

S
E
T

IN
F
O

o
n

b
eh
a
lf
o
f
en
ti
ty

A
n
y

K
ey
ed

A
cc
o
u
n
t

N
ev
er

N
o

M
A
N
A
G
E

C
E
R
T
IF

IC
A
T
E

A
b
il
it
y
to

m
a
n
a
g
e
ce
rt
ifi
ca
te
s
o
n

b
eh
a
lf
o
f
en
ti
ty

-
-

-
-

T
a
b
le

4
:
K
ee
ta
N
et

P
er
m
is
si
o
n
s

22

Delegation On KeetaNet, the “PERMIS-
SION DELEGATE ADD” and “PERMIS-
SION DELEGATE REMOVE” flags grant the
principal the ability to delegate permissions to
other addresses for the entity from which the
permissions were originally granted. Both flags
function similarly, but each represents a different
“AdjustMethod” that is being used in the “MOD-
IFY PERMISSIONS” block operation. A principal
with either of these flags can only add or remove
a subset of the permissions they hold on the same
entity. They cannot re-grant delegation permissions
(i.e “PERMISSION DELEGATE ADD” and “PER-
MISSION DELEGATE REMOVE”) unless they are
an admin of the entity.

5.5.3 Account certificates

Certificates allow the network to be in regulatory
compliance by providing a transparent and standard-
ized identification of participants.
Certificates are implemented in the Keeta network

to authenticate and verify the identity of a node or
account, but no PII (Personally Identifiable Informa-
tion) is stored on the ledger. The Keeta network
utilizes X.509 certificates. Certificates have a public
key to verify that they exclusively belong to a spe-
cific account and are digitally signed by a Certificate
Authority (CA) to verify that the certificate is legiti-
mate. Nodes add their root certificate as part of their
configuration. The signature on a certificate is simi-
lar to the signature on a block. X.509 certificates can
be signed and verified using the same algorithms as
supported accounts (Ed25519 and ECDSA).
Accounts do not have certificates by default, but

may be required to have a certificate to complete cer-
tain operations.

5.6 Network Initialization

An “initial trusted account” is configured on the net-
work to securely initialize the ledger. It has exclusive
permission to create valid votes while there is no del-
egated weight on the network. The role of this ac-
count is crucial for the network’s initialization, as it
provides initial account funding and delegates weight

to representatives. Any vote staples published while
there is zero weight must include a vote by this ac-
count. Additionally, this account bypasses permis-
sion requirements for the opening blocks on the net-
work and the base token’s chain. This exception al-
lows the necessary permissions to be granted for these
chains, ensuring a smooth network startup.

6 Security Measures

Security in a blockchain system spans multiple fac-
tors, from how data is encrypted and stored to the
safeguards against malicious attacks. Securing a de-
centralized network involves addressing a unique set
of challenges. To meet these demands, KeetaNet em-
ploys a robust security strategy that combines proven
protocols, advanced cryptographic techniques, data
integrity measures, and protections against common
attack vectors.

6.1 Cryptographic methods used

Digital Signatures KeetaNet currently supports 3
different cryptographic algorithms for performing
digital signatures, but is extensible to support addi-
tional algorithms, as well as deprecating algorithms
in the future should the need arise.

The currently supported algorithms are:

• ECDSA[28] with secp256k1[29, § 2.4.1]

• ECDSA[28] with secp256r1[29, § 2.4.2]

• Ed25519[28]

Hashing When a cryptographic hashing algorithm
is employed SHA3-256[30] is used.

6.1.1 Use of cryptosystems

KeetaNet uses digital signatures for digitally signing
blocks and votes, and cryptographic hashing for ref-
erencing blocks.

23

6.1.2 Post-Quantum Cryptography

KeetaNet is extensible to support additional cryp-
tographic algorithms and can be migrated to fully
support post-quantum cryptography (PQC), includ-
ing deprecating all algorithms which are not post-
quantum cryptography.

6.2 Data integrity

Ensuring data integrity is fundamental to the opera-
tion and trustworthiness of any blockchain system. In
the context of KeetaNet, where transactions are val-
idated through a meticulous two-phase voting pro-
cess, the preservation of untampered data becomes
even more vital.

Append-only Ledger Once a transaction has been
validated and appended to the blockchain, it becomes
an immutable record. This means that it cannot be
altered or deleted without a consensus from a quorum
of the network’s representatives. This feature ensures
that historical data remains consistent.

Cryptographic Hashing KeetaNet employs SHA3-
256 hashing for its records. This cryptographic hash
function ensures that any alteration to a record will
result in a change to its hash, making tampering eas-
ily detectable.

Chain Consistency Each block in the KeetaNet
blockchain includes a reference to the previous block
via its cryptographic hash. This chaining mechanism
guarantees that blocks are correctly ordered. Any
attempt to modify a block would alter its hash and
propagate the change to all subsequent blocks, mak-
ing unauthorized modifications immediately appar-
ent.

Use of TLS for Authentication and Integrity Kee-
taNet leverages Transport Layer Security (TLS) not
only for encryption of data in transit but also for
authentication and message integrity. By enforcing
HTTPS for all communications, the platform ensures

that messages exchanged between participants are se-
curely delivered and reliably authenticated, confirm-
ing that the sender and receiver are indeed who they
claim to be, and that the transmitted data has not
been altered in transit.
By embedding strong authentication and integrity

assurances at the communication layer, KeetaNet es-
tablishes a trustworthy foundation critical to its over-
all security model and essential for the platform’s
widespread adoption.

6.3 Measures against common attack vec-

tors

6.3.1 Sybil attack

One of the predominant concerns in decentralized sys-
tems is the Sybil attack, where a single adversary
controls multiple nodes on the network, effectively
trying to subvert the network’s functionality. Such
an attack can disrupt honest nodes from achieving
consensus or facilitate malicious activities.

To counteract this, KeetaNet supports the use of
X.509 certificates for certifying endpoints for repre-
sentatives. This certification process ensures that
each representative on the network can be authen-
ticated and can be trusted. X.509 certificates pro-
vide a standardized way of verifying the identity of
participants and tying them to an identity verified by
the public key infrastructure (PKI), making it logisti-
cally challenging for an attacker to create a significant
number of Sybil nodes since it would need to subvert
the certification process.
By relying on the trusted certification process, not

only does KeetaNet dramatically reduce the poten-
tial for Sybil attacks, but it also establishes an added
layer of trust among participants. This approach en-
sures that network nodes represent unique, authenti-
cated entities, effectively fortifying the network’s re-
silience against such threats.

6.3.2 Spam attack

In the decentralized environment of blockchain sys-
tems, spam attacks often manifest as an influx of le-
gitimate yet superfluous transactions. These transac-

24

tions, while valid in their structure, are intentionally
designed to flood the network, causing bottlenecks,
delays, and inefficiencies.
KeetaNet employs a strategic approach to counter

such spamming tactics. Firstly, the network’s design
incorporates a two-phase voting process (see Section
5.2), which acts as an initial filter to mitigate the
volume of these transactions. However, in situations
where an actor is persistent in dispatching a large
number of genuine but unnecessary transactions, rep-
resentatives on KeetaNet have the agency to respond.
Representatives can observe transaction patterns

and, upon identifying an attempt to spam the net-
work, have the discretion to adjust transaction fees.
By ratcheting up these fees in response to abnormal
transactional activity, KeetaNet introduces a finan-
cial deterrent. This increased cost makes it pro-
hibitively expensive for malicious entities to con-
tinue their spamming efforts. Furthermore, repre-
sentatives can also choose to decline voting for these
transactions entirely, effectively blocking them from
being added to the blockchain. This dual-layered
approach ensures that KeetaNet remains resilient
against transactional spam, ensuring smooth oper-
ations and preserving network integrity.

6.3.3 Denial of service attack

ADenial of Service attack aims to render a service un-
available by overwhelming it with traffic or exploiting
specific vulnerabilities. In blockchain contexts, DoS
attacks can severely hamper network operations, af-
fecting all users connected to the network.
KeetaNet’s design incorporates preemptive mea-

sures against DoS attacks. The aforementioned two-
phase voting process not only helps against spam at-
tacks but is also effective in mitigating the impact of
DoS attacks. By utilizing HTTPS in the voting pro-
cess, KeetaNet can employ existing DDoS and DoS
prevention mechanisms to safeguard the network such
as cloud-based anti-DDoS solutions.
Additionally, representatives observing abnormal

traffic or suspicious patterns indicative of a DoS at-
tack can start imposing fees on suspected malicious
actors. This proactive stance not only helps to mini-
mize the impact of DoS attacks but also empowers the

representatives to maintain the network’s integrity
actively.

7 Scalability

7.1 Problem areas

Validation architectures: Chains versus DAGs One
of the key areas where many blockchains face chal-
lenges is their underlying validation architecture.
Blockchains like Bitcoin and Ethereum use chain
structures where each block is added to a single, lin-
ear chain. This structure, while secure and easy to
validate, does not scale well due to the serialized na-
ture of block addition.
Blockchain systems based on directed acyclic

graphs (DAGs), such as KeetaNet, on the other hand,
allow for more flexibility and parallelism. Each new
transaction only needs to be ordered with respect
to the transactions it references–usually just a sin-
gle predecessor transaction. This is a more scalable
solution but introduces complexities around transac-
tion ordering and finality.

Transaction distribution: The “mempool”bottleneck

In many traditional blockchain systems, message dis-
tribution mechanisms, such as the mempool, present
challenges that hinder the scalability and determin-
ism of the network. These systems often rely on
the ”waiting room”concept, where transactions await
confirmation and inclusion in a block. However, this
approach complicates the design of scalable, event-
driven architectures that rely on a deterministic state
machine model.
For example, in widely used blockchain systems

like Bitcoin and Ethereum, the mempool serves as
a temporary holding area for transactions that have
been broadcast to the network but not yet added to a
block. While this mechanism allows nodes to collect
and disseminate transactions before they are written
into the blockchain, it introduces a significant prob-
lem.
The key drawback of using a mempool is its prob-

abilistic nature. Transactions in the mempool can be
evicted by nodes before being included in a block,

25

leading to uncertainty about whether a transaction
will ever be confirmed. This introduces additional
complexity and reduces the system’s determinism,
making it more difficult to build scalable and efficient
software for blockchain networks.

Protocols: Bespoke approaches Existing blockchain
systems generally use bespoke protocols to carry mes-
sage traffic between users and nodes and between
nodes. While these bespoke protocols are often de-
signed to optimize node efficiency, they limit the abil-
ity to integrate with existing third-party software or
existing tools that are not specifically built to sup-
port them. This issue is especially pronounced in
cases where the protocol is built on lower-level, less
common transport layers such as UDP, which can
further complicate compatibility and interoperabil-
ity. KeetaNet builds upon HTTP and can take full
advantage of many HTTP scaling solutions.

7.2 Scalability solutions

Validation architecture The KeetaNet blockchain
design and implementation is a hybrid approach that
incorporates elements of several different consensus
and distributed state machine designs. One of the
key distinguishing features of KeetaNet is that there
is no single, monolithic blockchain. Each account
owner has their own, essentially isolated blockchain.
Due to this feature, KeetaNet has similarities to Di-
rected Acyclic Graph (DAG) based blockchains, but
it is not implemented as a DAG. It is a“virtual DAG”
design. Links across individual account blockchains
are not necessarily explicit, as would occur in a true
DAG design, rather they are implicit by the atomic
transaction based persistence model used for adding
blocks and adjusting balances.

Transaction distribution The KeetaNet blockchain
system uses“client directed”transaction distribution,
where blocks that have not reached quorum are not
exposed to the wider network but are limited to the
set of nodes which provide voting services on the
network. Because the client requesting votes talks
directly to the representatives providing votes this

forms a single pipeline where event processing is lin-
ear instead of happening at some unspecified time in
the future which could lead to liveness faults as well
as user frustration.

Additionally, because only fully accepted blocks
are broadcast this reduces the amount of traffic on
the most vulnerable part of the distribution system–
the peer-to-peer (P2P) network.

Protocols KeetaNet uses HTTP[31] as the primary
mechanism for performing consensus-related actions.
Regular HTTP“POST”messages are used to request
votes (see section 5.1 on page 14 for more details on
voting), and WebSockets[32] are used for peer-to-peer
traffic. HTTP is a very common protocol, being the
core protocol for the Web and has broad support for
creating scalable applications using cloud computing
providers.

8 Use Cases

The KeetaNet blockchain provides an excellent base
layer for a future cryptocurrency economy. Designed
to meet the demands of scalability, security, flexibil-
ity, and adaptability to diverse regulatory environ-
ments, KeetaNet’s core attributes are optimized for
a sustainable, civilization-scale solution for represent-
ing and transferring value over the coming decades.

As a cryptocurrency system, KeetaNet provides
out-of-the-box, reliable and foundational tools, such
as native tokens and administration tools, which
would typically be added as afterthoughts in other
systems. With KeetaNet, these core capabilities are
integrated from the start, ensuring reliability and ef-
ficiency.

Additionally, businesses and government regula-
tors are increasingly requiring controls to be im-
plemented to safely interact and do business with
blockchain technologies. Here too, KeetaNet is well-
equipped to meet these demands, offering scalable
solutions that cater to global regulatory regimes and
evolving regulatory landscapes.

26

8.1 Real-world scenarios where KeetaNet

can be applied

8.1.1 Cryptocurrency Central

KeetaNet’s native support for tokenization (as dis-
cussed in section 4.1.2 on page 13) with built-in sup-
port for atomic swap between tokens (as briefly dis-
cussed in section 5.4.2 on page 18) as well as provid-
ing for arbitrary metadata (as discussed in section
4.1.2 on page 13) positions KeetaNet as a versatile
platform for interconnected services.

Since KeetaNet represents the highest throughput
blockchain system, and supports the features dis-
cussed in this paper, it is an ideal candidate to act as a
“layer 2” for many other cryptocurrencies. KeetaNet
allows for high throughput, low-latency transfers of
wrapped tokens with a high degree of certainty due to
non-repudiation mechanisms (such as certificates, as
discussed in section 4.1.2 on page 13). Furthermore,
by “wrapping” other currencies as KeetaNet tokens,
and advertising availability for atomic swap as well as
compliance-based on-boarding and off-boarding us-
ing metadata, KeetaNet is an ideal “network of net-
works.”

8.1.2 Blockchain Banking

Due to its support for the primitives needed to op-
erate in a highly regulated environment while pre-
serving privacy, KeetaNet is an ideal candidate for a
future blockchain-based banking system.

KeetaNet’s permissioning model enables the en-
forcement of rules such as limiting transactions to
users with appropriately issued certificates, making
it possible to regulate who can transact in a given to-
ken. By leveraging KeetaNet’s permissioning system,
it is possible to create stablecoins that represent fiat
currencies, backed and operated by regulated finan-
cial institutions.

This functionality paves the way for the emer-
gence of blockchain-based banking systems, fostering
greater adoption of cryptocurrencies and positioning
KeetaNet as a key player in the evolution of the global
financial ecosystem.

8.1.3 Digital Identity

As a consequence of supporting identity verifica-
tion using PKI, KeetaNet enables decentralized, user-
controlled verification of individual attributes with-
out requiring a single centralized authority. This de-
centralized approach clearly defines trust boundaries:
trust is established directly between users and cer-
tificate issuers, with users maintaining control over
which private information they disclose.
By using a combination of public-key encryption

with ECIES[33] and salting-based hashing, it is pos-
sible to encode the user’s private attributes into their
certificate. These attributes can then be proven to
have been verified by the verifying certificate author-
ity (e.g. any number of selected or approved KYC
providers), without revealing any private information
about the user to the public.
This also enables non-financial participants to use

KeetaNet to prove specific details about the user - for
example, that their email address has been validated.
This can be used to build systems which require some
identity management without the cost of each service
needing to perform their own validation, and avoid-
ing the all-too-common dangers posed by reliance on
centralized repositories of personal information.
Certificates associated with an account must share

the same private key as certified in the certificate.
However, KeetaNet does not impose restrictions on
who can issue certificates nor does it define specific
trust anchors within the PKI ecosystem. Establishing
trust anchors and managing issuer validation are ex-
plicitly left to higher-level protocols and user-defined
policies, ensuring transparency about trust bound-
aries within the system.

8.2 Comparative advantage of KeetaNet

KeetaNet offers a range of advantages that set it
apart from not only blockchain systems but a wide ar-
ray of technology platforms, making it well-suited for
diverse use cases. As a global ledger with integrated
permissions and a robust capabilities model, Kee-
taNet’s modular and flexible architecture provides
the following benefits:

• Scalability: Leveraging an enhanced Delegated

27

Proof of Stake (dPoS) mechanism, KeetaNet is
highly scalable, ensuring efficient performance
even as the network grows.

• Security: With digital identity features and fully
consistent writes, KeetaNet ensures secure trans-
actions.

• Flexibility: Multi-token support and robust abil-
ity to be updated make it adaptable for various
applications.

• Global Governance: Its decentralized nature al-
lows for global participation while still adhering
to local laws through token-level governance.

• Cost-Efficiency: By leveraging existing cloud in-
frastructure and providing options for transac-
tion fees in various tokens, it can be more cost-
effective and cost-predictable.

• Interoperability: The ability to partition the net-
work into distinct, interoperable subnets allows
for greater flexibility and collaboration between
diverse parties.

• Regulatory Compliance: Built-in support for
digital identity and sanctioning mechanisms
make it easier to comply with laws and regu-
lations.

By addressing these critical needs, KeetaNet is posi-
tioned to not only revolutionize digital currencies, but
has the potential to transform any domain requiring
secure, scalable, and governed data management.

9 Benchmarks and Performance

Metrics

9.1 Tests conducted

Maximum TPS Throughput Test

This test is designed to measure the best-case
throughput of KeetaNet and validate that the system
can scale linearly with hardware utilization. It em-
ploys a network topology in which the sending node

generates permanent votes locally, with only a sin-
gle voting representative. Each block contains 1,000
simple “send” transactions. The goal of this test is
to ensure that KeetaNet’s design and implementa-
tion can handle increased workloads efficiently while
maintaining linear scalability.
It has been conducted multiple times with different

node configurations and the results have been com-
piled into Table 5 on the following page.

9.2 Comparison with existing technologies

As noted in table 1 on page 8, KeetaNet significantly
outperforms other blockchain systems in terms of
throughput and does not sacrifice latency while doing
so.

9.3 Future tests

In the future, we plan to perform benchmarking in
various other additional configurations. They are de-
scribed in Table 6 on the following page.

10 Conclusion

In the evolving digital landscape, KeetaNet repre-
sents a significant advancement in blockchain technol-
ogy, designed to address key challenges that have hin-
dered the scalability, security, and flexibility of tradi-
tional blockchain systems. By incorporating cutting-
edge features such as high throughput, advanced
cryptographic methods, and robust digital identity
management, KeetaNet provides a highly scalable
and secure foundation for a range of applications,
from cryptocurrencies to decentralized finance (DeFi)
and identity verification.
What sets KeetaNet apart is its focus on modular-

ity and adaptability. The system’s support for multi-
token capabilities, permissioned governance, and in-
teroperable subnets allows for seamless integration
with existing infrastructure while also enabling new,
innovative use cases. This flexibility makes it an
ideal platform not only for blockchain applications,
but also for industries requiring secure, scalable, and
compliant data management solutions.

28

Date Cloud Provider Ledger Database Max TPS

06/10/2022 AWS DynamoDB 2M
06/20/2022 AWS DynamoDB 3.5M
07/12/2022 GCP Spanner 13M

Table 5: Maximum TPS Throughput Testing Results

Name Representatives Other Nodes Transactions per Block Blocks per Staple

Basic 5 0 1000 1
Real World 5 10 1 to 10 1 to 2

Large Network 5 30 1 1

Table 6: Future Testing Configurations

Furthermore, KeetaNet’s design ensures resilience
against centralization risks, with its adaptive voting
mechanisms, robust security protocols, and customiz-
able metadata and certificates. The network’s ability
to support regulatory compliance and provide veri-
fiable methods for cryptographically secure identity
verification opens the door to new opportunities for
blockchain-based banking, secure digital identities,
and compliance with varying global regulations.

10.1 Future work and extensions

Going forward, there are several exciting avenues for
the development and deployment of KeetaNet:

• Enhanced Consensus to deal with skewed net-
work voting power distributions

• Formal verification of the protocol and documen-
tation of the state machine

• Additional support for smart contracts so that
applications can be built to run directly on Kee-
taNet

• Post-Quantum Cryptography support as it be-
comes available

• More efficient bootstrapping and checkpointing
systems

• Improvements to the peer-to-peer protocol

• Publish the “KeetaNet Anchor” specification,
which:

– Allows for interoperability between clients
on KeetaNet to provide and consume com-
mon services (Banking, FX, Inbound, Out-
bound, and Cards)

– Documents the X.509v3 Certificate Exten-
sions used for identifying users securely and
privately

29

A References

A.1 Endnotes

[1] R. C. Merkle, “A digital signature based on a conventional encryption function,” in Advances in Cryp-
tology — CRYPTO ’87, C. Pomerance, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1988,
pp. 369–378, isbn: 978-3-540-48184-3.

[2] E. A. Brewer, “Towards robust distributed systems,” in Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing, ser. PODC ’00, Portland, Oregon, USA: Associa-
tion for Computing Machinery, 2000, p. 7, isbn: 1581131836. doi: 10.1145/343477.343502.

[3] N. Szabo. “The idea of smart contracts.” (1997), [Online]. Available: https://nakamotoinstitute.

org/the-idea-of-smart-contracts/.

[4] J. Poon and T. Dryja. “The Bitcoin lightning network: Scalable off-chain instant payments.” (Jan.
2016), [Online]. Available: https://lightning.network/lightning-network-paper.pdf (visited on
09/01/2023).

[5] J. Bier, The Blocksize War: The Battle Over Who Controls Bitcoin’s Protocol Rules. Independently
published, 2021, isbn: 979-8721895609.

[6] E. Lombrozo, J. Lau, and P. Wuille. “Bip 141: Segregated witness (consensus layer).” (Dec. 2015),
[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.

[7] S. Sinclair and D. Canellis. “Bitcoin mempool surges point to new life for world’s
first blockchain.” (Mar. 2023), [Online]. Available: https : //blockworks.co/news/

bitcoin-mempool-surges-new-life-for-blockchain.

[8] “Scaling.” (Apr. 2023), [Online]. Available: https://ethereum.org/en/developers/docs/scaling/.

[9] D. Robinson and G. Konstantopoulos. “Ethereum is a dark forest.” (Aug. 2020), [Online]. Available:
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest.

[10] E. Mikalauskas. “280 usd million stolen per month from crypto transac-
tions.” (Feb. 2023), [Online]. Available: https : //cybernews.com/crypto/

flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions.

[11] P. Wackerow. “Miner extractable value (mev).” (Jun. 2023), [Online]. Available: https://ethereum.

org/en/developers/docs/mev.

[12] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM Transactions on
Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, 1982. doi: 10.1145/357172.357176.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson,“Impossibility of distributed consensus with one faulty
process,”ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985, issn: 0004-5411. doi: 10.1145/3149.214121.

[14] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. [Online]. Available: https : //

bitcoin.org/bitcoin.pdf.

[15] “The merge.” (Aug. 2023), [Online]. Available: https://ethereum.org/en/roadmap/merge/ (visited
on 09/01/2023).

[16] “Hackers are stealing more cryptocurrency from DeFi platforms than ever before.”(Apr. 2022), [Online].
Available: https://www.chainalysis.com/blog/2022-defi-hacks/.

30

https://doi.org/10.1145/343477.343502
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://lightning.network/lightning-network-paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://blockworks.co/news/bitcoin-mempool-surges-new-life-for-blockchain
https://blockworks.co/news/bitcoin-mempool-surges-new-life-for-blockchain
https://ethereum.org/en/developers/docs/scaling/
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions
https://cybernews.com/crypto/flash-boys-2-0-front-runners-draining-280-million-per-month-from-crypto-transactions
https://ethereum.org/en/developers/docs/mev
https://ethereum.org/en/developers/docs/mev
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3149.214121
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/en/roadmap/merge/
https://www.chainalysis.com/blog/2022-defi-hacks/

[17] Diem Team, “DiemBFT v4: State machine replication in the Diem blockchain,” Diem Asso-
ciation, Tech. Rep., Aug. 2021. [Online]. Available: https : //developers.diem.com/papers/

diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf.

[18] R. Gelashvili et al., Block-STM: Scaling blockchain execution by turning ordering curse to a performance
blessing, Aug. 2022. arXiv: 2203.06871 [cs.DC].

[19] M. Baudet, G. Danezis, and A. Sonnino, FastPay: High-performance byzantine fault tolerant settlement,
Nov. 2020. arXiv: 2003.11506 [cs.CR].

[20] G. Danezis, E. K. Kogias, A. Sonnino, and A. Spiegelman, Narwhal and Tusk: A DAG-based mempool
and efficient BFT consensus, Mar. 2022. arXiv: 2105.11827 [cs.CR].

[21] “Sui FAQ: Design complexity.” (Jul. 2023), [Online]. Available: https : //docs.sui.io/learn/

sui-compared#design-complexity (visited on 09/01/2023).

[22] “What is Tendermint.” (May 2021), [Online]. Available: https : //docs.tendermint.com/v0.34/

introduction/what-is-tendermint.html (visited on 09/01/2023).

[23] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency control,” ACM Trans.
Database Syst., vol. 6, no. 2, pp. 213–226, Jun. 1981, issn: 0362-5915. doi: 10.1145/319566.319567.
[Online]. Available: https://doi.org/10.1145/319566.319567.

[24] ITU-T, “ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER),” ITU-T, Standard, 2002. [Online]. Available:
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf.

[25] ITU-T, “Information technology – Open Systems Interconnection – The Directory: Public-key and
attribute certificate frameworks,” ITU-T, Standard, 2020. [Online]. Available: http://www.itu.int/

rec/T-REC-X.509.

[26] D. E. Eastlake 3rd, Transport Layer Security (TLS) Extensions: Extension Definitions, RFC 6066,
Jan. 2011. doi: 10.17487/RFC6066.

[27] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”Commun. ACM, vol. 13,
no. 7, pp. 422–426, Jul. 1970, issn: 0001-0782. doi: 10.1145/362686.362692.

[28] L. Chen, D. Moody, A. Regenscheid, and A. Robinson, “Digital signature standard (DSS),” en, NIST,
Standard, Feb. 2023. doi: 10.6028/NIST.FIPS.186-5.

[29] D. R. L. Brown, “SEC 2. standards for efficient cryptography group: Recommended elliptic curve do-
main parameters,”SECG, Tech. Rep., Jan. 2010. [Online]. Available: http://www.secg.org/sec2-v2.

pdf.

[30] M. Dworkin, SHA-3 standard: Permutation-based hash and extendable-output functions, Aug. 2015.
doi: 10.6028/NIST.FIPS.202.

[31] H. Nielsen et al., Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, Jun. 1999. doi:
10.17487/RFC2616.

[32] A. Melnikov and I. Fette, The WebSocket Protocol, RFC 6455, Dec. 2011. doi: 10.17487/RFC6455.

[33] “Ieee standard specifications for public-key cryptography,” IEEE Std 1363-2000, pp. 1–228, 2000. doi:
10.1109/IEEESTD.2000.92292.

31

https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://arxiv.org/abs/2203.06871
https://arxiv.org/abs/2003.11506
https://arxiv.org/abs/2105.11827
https://docs.sui.io/learn/sui-compared#design-complexity
https://docs.sui.io/learn/sui-compared#design-complexity
https://docs.tendermint.com/v0.34/introduction/what-is-tendermint.html
https://docs.tendermint.com/v0.34/introduction/what-is-tendermint.html
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/rec/T-REC-X.509
http://www.itu.int/rec/T-REC-X.509
https://doi.org/10.17487/RFC6066
https://doi.org/10.1145/362686.362692
https://doi.org/10.6028/NIST.FIPS.186-5
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC6455
https://doi.org/10.1109/IEEESTD.2000.92292

A.2 Nomenclature

AML Anti-Money Laundering – A set of regulatory measures and processes that financial institutions
and other regulated entities implement to detect and prevent money laundering activities

ASN.1 Abstract Syntax Notation One – Specification for defining schemas, defined by ITU X.690.

AWS Amazon Web Services – A cloud computing provider owned by Amazon

BFT Byzantine Fault Tolerance – The property of a distributed system that allows it to continue
functioning correctly, even if some components (or nodes) fail or act maliciously, as long as the
number of faulty nodes is below a certain threshold

CAP Consistency, Availability, and Partition Tolerance – an ”iron triangle” for which a distributed
system must optimize between

DAG Directed Acyclic Graph – A type of graph in which edges are directed but never form any closed
loops

DER Distinguished Encoding Rules – Rules for encoding ASN.1 data into bytes where each encoded
element has nominally only a single way of being represented

DLT Distributed Ledger Technology – A type of ledger built upon distributed systems

dPoS Delegated Proof of Stake

EcDSA Elliptic Curve Digital Signature Algorithm – a mechanism for creating digital signatures using
very efficient key sizes

Ed25519 Elliptical Curve-based digital signature algorithm using the Edwards-curve and specifc curve
parameters

FLP Fischer, Lynch, and Paterson – Authors of the FLP Impossibility theorem

HTTP Hyper Text Transport Protocol – a very common protocol for transporting messages over TCP/IP

KYC Know Your Customer – A regulatory principle that a regulated entity is responsible for under-
standing who they are doing business with

OCC Opportunistic Concurrency Control; As opposed to a system like multiversion concurrency con-
trol, provides transactional semantics but by default assumes every transaction is conflict free

OID Object Identifier – An ASN.1 type that supports a hierarchical approach to assigning identifiers
based on a federated model

ORV Open Representative Voting – Nano’s name for its style of dPoS consensus where users can
delegate any representative to vote on their behalf

PII Personally identifiable information – sensitive information which can be used to identify a specific
person

PKI Public Key Infrastructure; The infrastructure required to validate the identity of entities using
X.509 certificates

32

PQC Post-quantum cryptography – a set of cryptographic algorithms that are expected to be safe from
being broken given sufficiently powerful quantum computer systems

secp256k1 Specific parameters for EcDSA, defined in SEC 2

secp256r1 Specific parameters for EcDSA, defined in SEC 2; Also known as NIST P-256 or prime256v1

TCP Transmission Control Protocol – The most common Internet Protocol; Stream oriented and used
by many other protocols; Known for reliable and ordered delivery of bytes within a stream

UDP User Datagram Protocol – A common Internet Protocol; Packet oriented and largely offloads the
semantics to the application; Compare with TCP

XRP Ripple’s cryptocurrency

A.3 Schemas

Listing 1: KeetaNet Block Schema

1 Keeta DEFINITIONS ::= BEGIN

2 AdjustMethod ::= INTEGER {

3 add (0) ,

4 remove (1) ,

5 set (2)

6 }

7
8 BlockOperation ::= CHOICE {

9 -- Send operation

10 send [0] SEQUENCE {

11 -- Destination account to send to

12 to OCTET STRING ,

13 -- Amount of the token to send

14 amount INTEGER ,

15 -- Token ID to send

16 token OCTET STRING ,

17 -- External reference field (optional)

18 external UTF8String OPTIONAL

19 },

20
21 -- SET_REP operation

22 setrep [1] SEQUENCE {

23 -- Representative to delegate to

24 to OCTET STRING

25 },

26
27 -- SET_INFO operation

28 setinfo [2] SEQUENCE {

29 -- Name to specify for this account

30 name UTF8String ,

31 -- Description to specify for this account

32 description UTF8String ,

33 -- Metadata to specify for this account

34 metadata UTF8String ,

35 -- Default permission to specify for this account (optional)

36 defaultPermission SEQUENCE {

33

37 -- Base permissions , which the network verifies

38 base INTEGER ,

39 -- External permissions , which the network

40 -- does not verify (for example , for use in

41 -- smart contracts)

42 external INTEGER

43 } OPTIONAL

44 },

45
46 -- MODIFY_PERMISSIONS operation

47 modifypermissions [3] SEQUENCE {

48 -- Principal to modify permissions for

49 principal OCTET STRING ,

50 -- Method to modify permissions for

51 method AdjustMethod ,

52 -- Permissions to modify , as a bitfield

53 permissions CHOICE {

54 -- Permissions to set

55 value SEQUENCE {

56 base INTEGER ,

57 external INTEGER

58 },

59 -- If no permissions are required

60 none NULL

61 },

62 -- Target to modify permissions for

63 target OCTET STRING OPTIONAL

64 },

65
66 -- CREATE_IDENTIFIER operation

67 createidentifier [4] SEQUENCE {

68 -- Identifier to create , this must match

69 -- the deterministic identifier which is

70 -- generated from the account , blockhash ,

71 -- and operation index

72 identifier OCTET STRING

73 },

74
75 -- TOKEN_ADMIN_SUPPLY operation

76 tokenadminsupply [5] SEQUENCE {

77 -- Amount of chagne to the supply

78 amount INTEGER ,

79 -- Method to modify the supply

80 method AdjustMethod

81 },

82
83 -- TOKEN_MODIFY_BALANCE operation

84 tokenmodifybalance [6] SEQUENCE {

85 -- Token to modify the balance of

86 token OCTET STRING ,

87 -- Amount to modify the balance by

88 amount INTEGER ,

89 -- Method to modify the balance

90 method AdjustMethod

91 },

92
93 -- RECEIVE operation

34

94 receive [7] SEQUENCE {

95 -- Amount to receive

96 amount INTEGER ,

97 -- Token to receive

98 token OCTET STRING ,

99 -- Sender from which to receive

100 from OCTET STRING ,

101 -- Whether the received amount must match

102 -- exactly (true) or just be greater than or

103 -- equal to the amount (false)

104 exact BOOLEAN ,

105 -- Forward the received amount to another

106 -- account (optional)

107 forward OCTET STRING OPTIONAL

108 }

109 }

110
111 Block ::= SEQUENCE {

112 -- Version of this block

113 version INTEGER { v1 (0) },

114 -- Network ID

115 network INTEGER ,

116 -- Subnet ID

117 subnet CHOICE {

118 -- Subnet ID

119 subnetID INTEGER ,

120 -- Null if no subnet (mainnet)

121 null NULL

122 },

123 -- Date of the block

124 date GeneralizedTime ,

125 -- Signer ’s public key

126 signer OCTET STRING ,

127 -- Account ID

128 account CHOICE {

129 -- Account ID

130 accountID OCTET STRING ,

131 -- Null if account is signer

132 null NULL

133 },

134 -- Previous block hash

135 previous OCTET STRING ,

136 -- Operations in this block

137 operations SEQUENCE OF BlockOperation ,

138 -- Signature of the block

139 signature OCTET STRING

140 }

141 END

Version 513253dbef757c4ea22c7cb0e2a3db21449a569e

35

	1 Introduction
	2 Basic Concepts
	2.1 What is a distributed ledger?
	2.2 What is a blockchain system?
	2.3 Why use a blockchain system?
	2.4 Importance of scalability
	2.5 KeetaNet improvements upon existing systems
	2.5.1 Extensibility
	2.5.2 Decentralization
	2.5.3 Scaling
	2.5.4 Features for Global Finance

	3 Prior Art
	3.1 Core challenges
	3.2 Existing blockchain systems

	4 System Architecture
	4.1 Components and their interconnections
	4.1.1 Node
	4.1.2 Ledger
	4.1.3 Communications

	5 Core Algorithms and Protocols
	5.1 Consensus algorithm
	5.2 Transaction validation
	5.2.1 Voting power

	5.3 Data storage and retrieval
	5.3.1 Concurrency control
	5.3.2 Consistency
	5.3.3 Ordering

	5.4 Data formats
	5.4.1 Accounts
	5.4.2 Operations
	5.4.3 Blocks
	5.4.4 Votes
	5.4.5 Staples

	5.5 Auxiliary functions
	5.5.1 Bootstrapping
	5.5.2 Permissions
	5.5.3 Account certificates

	5.6 Network Initialization

	6 Security Measures
	6.1 Cryptographic methods used
	6.1.1 Use of cryptosystems
	6.1.2 Post-Quantum Cryptography

	6.2 Data integrity
	6.3 Measures against common attack vectors
	6.3.1 Sybil attack
	6.3.2 Spam attack
	6.3.3 Denial of service attack

	7 Scalability
	7.1 Problem areas
	7.2 Scalability solutions

	8 Use Cases
	8.1 Real-world scenarios where KeetaNet can be applied
	8.1.1 Cryptocurrency Central
	8.1.2 Blockchain Banking
	8.1.3 Digital Identity

	8.2 Comparative advantage of KeetaNet

	9 Benchmarks and Performance Metrics
	9.1 Tests conducted
	9.2 Comparison with existing technologies
	9.3 Future tests

	10 Conclusion
	10.1 Future work and extensions

	A References
	A.1 Endnotes
	A.2 Nomenclature
	A.3 Schemas

